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We have performed a series of experiments on the dynamics of sedimenting, surface
gravity currents. The physical situation concerns a current, with total density ρC ,
evolving at the surface of a fluid of greater density, ρA. In turn ρC is made up of
interstitial fluid of density ρI and heavy particles with a concentration by weight c
and a density ρP . Only the case of the release of a constant volume of particles and
interstitial fluid has been considered in detail. It has been found that the sedimentation
of the particles, plus some of the interstitial fluid, through the interface between the
two fluids has a profound effect upon the motion of the current. When the rejected
mixture of particles and upper- and lower-layer fluids reaches the bottom of the
experimental tank it generates a secondary gravity current which in turn interacts
with the primary current to further modify its behaviour. Using simple models we
have been able to rationalize the observations and reveal the dynamical balances
which appear to be important. A subsidiary experiment and analysis on the flux
characteristics of the interface have been performed in order to further clarify the
important effects of the particle motion through that region.

1. Introduction
The subject of sedimenting gravity currents is an interesting one from a funda-

mental point of view, and one with a number of important applications. Several
experimental/modelling papers have appeared recently, mainly concerned with cur-
rent propagation over a solid surface. In the earliest work (Bonnecaze, Huppert &
Lister 1993) the current was made up of particles and interstitial fluid, with the latter
having the same or higher density than the ambient. In this case, the particles, as
they fell, were deposited onto the solid surface and no longer took part in the force
balance which set the forward motion of the current. In the second case the interstitial
fluid was lighter than the ambient (Sparks et al. 1993) and as the particles sedimented
downwards this lighter fluid was released and moved upwards carrying some particles
with it. Simple ‘box-models’ were found to describe the current motion well, once
the loss of particles and concommittent decrease in current density were taken into
account. Applications to pyroclastic flows from volcanoes, turbidity currents, etc. were
invoked as motivation for working on such problems.

In the present work the motivations are similar. When the dust cloud from a
volcanic eruption reaches its level of neutral buoyancy it spreads laterally as an
intrusion, the dynamics of which are modified by the flux of particles, and interior

† Permanent Address: Department of Aerospace and Mechanical Engineering, University of
Southern California, Los Angeles, CA 90089-1191, USA.



28 T. Maxworthy

fluid, through the bottom interface. The motion at the upper interface has much in
common with the flow considered above by Sparks et al. (1993), with interior fluid
and a few particles convecting upwards. Similarly when a sediment-laden fresh-water
riverine outflow reaches the denser ocean it can, depending on its relative density,
propagate outwards at any level. Here we consider the case where it is lighter than the
surface layers of the ocean and hence will move along that surface, depositing particles
and mixing as it travels. The question we ask here, and answer to some degree, is
how is the current motion affected by this flux and what unexpected phenomena take
place.

The question of the dynamics of such a sedimenting interface has been studied to
some extent in the case where there is little or no horizontal velocity in either fluid.
Here we refer to Green (1987) and Chen (1997) who noticed the similarity between the
convective modes seen in this case and those observed in double-diffusive convection
(e.g. Turner 1976). These similarities become even more evident upon comparing the
present results with those for double-diffusive gravity currents found in Maxworthy
(1983). Many of the same phenomena occur, and while the details are different much
of the modelling effort from that work carries over to the present case.

2. Apparatus and experimental procedure
2.1. Apparatus to study gravity current motion

The major piece of equipment that evolved during the course of this investigation
is shown in figure 1(a). It consisted of a rectangular tank 220 cm long, 57 cm deep
and 15.7 cm wide. At one end a smaller reservoir was attached that was 10 cm deep
and 40 cm long, and its effective length could be varied by inserting barriers at 7.6 cm
intervals, while it could be isolated from the main tank by a removable barrier at the
open end. It was used to study the motion generated by the release of a fixed volume
of interstitial fluid plus particles.

At the start of an experiment the main tank was filled with a dense solution of
sodium chloride in water, the density (ρA) of which was measured to five decimal
places using a specific gravity bottle calibrated against pure water. The secondary
box was filled with a well-mixed and known volume of particle-laden interstitial fluid,
e.g. fresh water, that had been prepared by adding an accurately weighed mass of
particles (mP ) to an accurately known weight of fluid (mI ). The particle concentration
by weight (c) was given by

c = mP/(mP + mI ),

so that the density of the mixture (ρC) could be calculated using

1/ρC = (c/ρP ) + (1− c)/ρI (1)

or, upon rearranging,

ρC = ρI/(1− ck) or ρC − ρI = ρI ck/(1− ck), (2)

where ρI is the density of the interstitial fluid, ρP that of the particles and k =
1− (ρI/ρP ). For the particles used here ρP = 3.217 g cm−3 so that k = 0.6897 for these
particles suspended in pure water at 20 ◦C. Of course the physical characteristics of
the particles themselves were also important, in particular their number and weight
distributions with diameter. Here we used 1000 grade carborundum powder, the
characteristics of which are discussed in detail in § 3.1.

To start the fluid dynamical component of an experiment the mixture in the
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Figure 1. (a) Apparatus to study the evolution of a sedimenting, surface gravity current. The
mixture of water and particles is initially retained behind the left-hand barrier. (b) The apparatus
of (a) modified to study the flux of particles and water through the interface between them and the
lower, heavier fluid.

secondary box was given a final, thorough stirring and the end barrier removed
within one to two seconds, i.e. before any substantial sedimentation could take place
to the bottom of the box. The motion of the current was recorded on video tape,
and sometimes on photographic film, to be analysed later. An extensive series of
experiments was run using combinations of two values of the lower-layer density
(ρA = 1.0380 ± 0.0005 and 1.0170± 0.0005 g cm−3), one value of lock height (7.9 cm)
and three values of its length (7.62, 15.24 and 22.86 ± 0.02 cm). For each combination
between four and fourteen values of ρC were used, depending on the purpose of the
particular sequence.

2.2. Modified apparatus to study interface fluxes

During the exploration of the parameter space outlined above it became clear that
the forward motion of the current was being greatly modified by the flux of par-
ticles/interstitial fluid/ambient fluid through the interface. To study this phenomenon
in more detail the tank used above was modified, as shown in figure 1(b). A barrier
was placed 65 cm from the end of the tank so that, after the release of a particle/water
mixture, the current was stopped by the barrier. After a few seconds a horizontally
uniform layer of particles/water was formed. This layer was much thicker than that
formed in the absence of the barrier and this improved the spatial resolution of the
measurements described below.

Sedimentation began and when sufficient particles had entered the lower fluid to
generate an unstable, intermediate layer large-scale convection began. The system
was allowed to run until all of the particles had settled to the bottom of the tank. As
before, a gravity current of particles and light mixed fluid traversed the bottom of
the tank and into the right-hand compartment where the mixed fluid was eventually
released as the particles sedimented to the bottom boundary. Samples were withdrawn
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from various levels in the upper half of the tank using a specially designed, flattened
nozzle that reduced contamination from fluid at other levels. The sample densities
were measured to five decimal places using a 100 cm3 specific gravity bottle. From
these measurements the total density deficit could be found, compared with the initial
deficit and the amount of interstitial fluid mixed into the lower layer calculated.
Details of this calculation and the results therefrom are given in § 3.4.

3. Results and flow modelling for the release of a constant volume of
particles/interstial fluid

3.1. Dimensionless parameters

The independent variables in this section of the work are: (a) the length (x0) and
height (h0) of the initial reservoir of particles and pure water; (b) the densities of (i)
the lower, ambient, fluid (ρA), (ii) the interstitial fluid (ρI ), (iii) the upper layer of
particles/water (ρC) and (iv) the particles themselves (ρP ).

The particles are characterized by their normalized number (N/Nmax) and weight
[Nd3/(Nd3)max] distributions with diameter (di) as shown in figure 2. Associated with
each particle diameter is a free settling velocity (vi) which we assumed is given by a
balance between the particle buoyancy and the Stokes drag, so that

vi = d2
i g(ρP − ρI )/18ρIνI , (3)

where g is the acceleration due to gravity and νI the kinematic viscosity of water.
Values of vi for the particles used here are given on figure 2 also. In what follows
we use a representative value of vi to describe the whole distribution. This value,
designated vs is the velocity of the particles at the peak of the number distribution, i.e.
with diameter 6.7 µm, with the result that vs/(g

′h0)
1/2 becomes a further independent,

dimensionless variable.
The measured, dependent variables are the position (x) of the front at time (t) after

the removal of the barrier. Following Rottman & Simpson (1983), for example, we
make x dimensionless with x0 and t with x0/(g

′h0)
1/2, where g′ = g(ρA − ρC)/ρA.
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In order to characterize the sedimentation process we make use of the formalism
developed for double-diffusive phenomena (e.g. Turner 1976) and start by introducing
the density-difference ratio:

Rρ = (ρA − ρI )/(ρC − ρI ). (4)

In the present case this can vary from unity to large values, with the most intense
convection occurring when Rρ is close to unity. In what follows it is more useful to
consider the quantity:

R = Rρ − 1 = (ρA − ρC)/(ρC − ρI ), (5)

which now varies from zero to large positive values. Negative values represent layers
that are gravitationally unstable even in the absence of sedimentation.

As will be seen the flux or mean velocity (Vi) of particles, plus interstitial fluid,
through the interface is the physical quantity that is most important in determining
how the motion of a gravity current, initially in a buoyancy–inertial balance, is
modified by sedimentation. Vi has been measured during the initial stages of the
current motion and is presented in dimensionless form in § 3.3.2 using both vs and
(g′h0)

1/2 as reference velocities.
Note also that the largest value of c used here is approximately 0.04. This corre-

sponds to a volume fraction of particles of about 0.013, a value that is considered
to give particle dynamics that are minimally affected by particle/particle interactions
(e.g. Davis & Acrivos 1985).

3.2. Overall features of the flow

3.2.1. Typical flow evolution

The two density differences between the ambient and interstitial fluids used here
are (ρA − ρI )/ρI = 0.0380± 0.0005 and 0.0170± 0.0005 and the corresponding values
of the buoyancy jump in fluid properties across the interface, ∆g′ = g(ρA − ρI )/ρI
are ∆g′1 = 37.3± 0.5 and ∆g′2 = 16.7± 0.5. For these values and values of R greater
than approximately 2, the motion of the current was not much different from the
non-sedimenting case, and a further description is unnecessary. For values less than 2
and greater than approximately 0.15 the basic evolution of the current, with time, was
the same except that the typical evolutionary time scale was shorter as R approached
the smaller value. Here we describe a typical flow evolution for an intermediate case
with R = 0.77.

A sequence of photographs for this case is shown in figure 3. The dark material
is a mixture of fluid and black carborundum powder, although dye was often added
to the released fluid in order to mark it when all the particles had sedimented out.
Upon release of the dammed-up mixture its leading edge accelerated to a constant
velocity (Ug) within the first 10–15 cm of travel. The constant-velocity phase (figure
3a) lasted until the current had travelled approximately 130 cm (figure 3b). At this
time the current began to decelerate until it stopped at x ≈ 180 cm. During this latter
motion a sequence of strong convective plumes, that contained particles and a mixture
of the interstitial and lower fluid, had developed below the surface current (figure
3c–i). Eventually (figure 3f) the plume nearest the nose became so energetic that it
created a backflow that, as we shall see, was mainly responsible for the stopping of
the primary current. While stopped the current continued to deposit particles until
the interfacial flux was so small, and the density difference between the current and
its surroundings so large, that the backflow was no longer able to stop its forward
motion and it began to move forward again (figure 3j). This photograph shows, also,
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Figure 3 (a–j). Photographs of the time evolution of a sedimenting current for R = 0.77, h0 = 7.9 cm,
x0 = 15.24 cm and ∆g′1 = 37.3. Critically, at the time (f) was taken, a backflow generated by the
convection to the left had developed. This flow, when inverted, is similar to the initial development
of a sea-breeze front.
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Figure 4. Raw data curves of the distance travelled by the nose of the current versus time. For the
indicated values of R and h0 = 7.9 cm, x0 = 15.24 cm and ∆g′1 = 37.3.

that the mixture of particles and interstitial and ambient fluids that had reached
the bottom of the tank formed a secondary gravity current that moved slowly along
the bottom, and it too generated a backflow at the level of the primary current.
The secondary current was of the type discussed by Sparks et al. (1993), in that it
contained particles plus a fluid mixture that was lighter than the surroundings. In
this case, as the particles sedimented to the bottom this lighter fluid was released to
form upward-moving plumes that also contained some particles.

The exceptions to the description given above occurred when R was less than
approximately 0.15. In these cases the rapid fallout of particles/interstitial fluid from
the current, and the formation of a single, large plume, led to the very rapid evolution
of the bottom gravity current. What was left of the virtually particle-free primary
current was then able to ‘escape’ the influence of this evolution and was not stopped
as its less energetic counterparts had been, at larger values of R.

In what follows we first quantify the statements made above, concerning the
current motion, and then analyse and model each segment in an attempt to show the
important dynamical balances that are responsible for each phase of this motion.

3.2.2. Dimensionless x vs. t evolution, for various release volumes and values of R and
ρA/ρI

In figure 4 we show one example of the raw x vs. t data that have been obtained
for a constant density difference [(ρA−ρI )/ρI ] of 0.0375 g cm−3, with h0 = 7.9 cm and
x0 = 15.2 cm and various values of R. Here one can see the effect of the decrease in
(ρA−ρC) on the initial velocity of the current and the asymptotic position of the front
(xequil.) as R decreases. As discussed above, these results should be made dimensionless
using x0 and x0/(g

′h0)
1/2 as length and time scales respectively. Typical results are

shown in figure 5 for the same conditions as figure 4 as well as some of the other
cases that were run. Note that the behaviour after the ‘asymptotic or equilibrium’
length has been reached is not plotted because it was very difficult to extract from
the video record due to both its small vertical scale and its lack of contrast with the
background.

Several points are particularly noteworthy: (i) At large values of R the initial,
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constant-velocity phase of the motion has a magnitude that agrees very closely with
the results of Rottman & Simpson (1983) for the present experimental value of
h0/H = 0.14, i.e. Ug = 0.63 (g′h0)

1/2† (here H is the total depth of the tank). This
implies that the current motion is not affected by sedimentation at these large values
of R. (ii) As R decreases the initial velocity becomes smaller than the value given
above. Here sedimentation is affecting the motion. (iii) The asymptotic length of the
current, before it begins to move forward again, decreases as R decreases.

Two other quantities were measured, the first from the video record and the second
by visual observation. These were the depth (hF ) of the convective plumes beneath
the current versus time at a particular x location, and the time (tc) taken between
the passage of the head of the current and the beginning of convection from the
underside of the current. These results will be presented later and in Maxworthy
(2000) when they are needed to explain and/or motivate a particular point.

3.3. Flow modelling and experimental interpretation

3.3.1. Introduction

In the subsections that follow the experimental results introduced above will be
dissected and each segment modelled in a way that appears to produce a self-consistent
dynamical picture. In part we rely on a modelling effort that was reasonably successful
in describing the dynamics of double-diffusive gravity currents (Maxworthy 1983). In
particular it relies on the idea that the vertical transport of particles and interstitial
fluid across the interface, between the current and its surroundings, takes with it the
along-channel momentum of those same fluid elements which is then reduced to zero
by interaction with the lower fluid. As a result the current experiences an effective
surface stress equal to

ρCUVi, (6)

where U and Vi are the relevent along-channel and sedimentation velocities respec-
tively, and the exact values of which depend on the segment of the motion being
considered.

3.3.2. Behaviour at early times

The behaviour at early times can be simply characterized as a reduction of the
constant velocity of propagation, under conventional buoyancy–inertia balance, by the
flux of material through the interface at the head of the current. In this non-self-similar
phase of the motion the horizontal force balance of the former, non-sedimenting flow,
can be modelled as

k−2h0U
2
g ≈ g′h2

0 (7)

where Ug is the velocity of the head of the gravity current with no sedimentation, and
k−2 is an overall constant which combines both the relationship between the actual
height of the current and h0 and a measure of the effective drag on the head. Previous
experiments have shown that for the value of h0/H used here k ≈ 0.63 (Rottman &
Simpson 1983). Thus (7) gives

Ug = k(g′h0)
1/2. (8)

The effect of sedimentation is to modify (7), in the light of (6), to read

k−2h0U
2
P ≈ g′h2

0 − κh0UPVi (9)

† According to the experiments of Rottman & Simpson (1983) k is virtually constant at this
value over the range of h0/H from zero to 0.2.
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Figure 6. The effective sedimentation velocity through the interface made dimensionless with
(g′h0)1/2, i.e. (V ∗), versus R. For ∆g′1 = 37.3 (circles), ∆g′2 = 16.7 (diamonds) and all values of x0.

where κ is a constant which relates the effective length of the gravity current head to
h0, and UP is the velocity of the current with sedimentation.

Thus (9) can be manipulated to give

UP/k(g
′h0)

1/2 = −V ∗ ± [V ∗2 + 1]1/2, (10)

where V ∗ = (kκVi/2)/(g′h0)
1/2. Physically it only makes sense to use the plus sign

in this equation, so that upon plotting the function V ∗ on the right-hand side of
equation (10), one finds that, to a very good approximation

UP/(g
′h0)

1/2 ≈ k(1− 0.85V ∗) (11)

over the range of V ∗ of interest. Finally, it is more accurate, experimentally, to
subtract the actual value of Ug = k(g′h0)

1/2 found in these experiments for the case
at the largest value of R, so that V ∗ is calculated from

V ∗ = (Ug −UP )/0.85k(g′h0)
1/2. (12)

Thus VE = (kκVi/2) = V ∗(g′h0)
1/2 represents an effective, average velocity of

sedimentation through the interface, over the effective length of the current head, and
furthermore its magnitude can be extracted from the experimental data. From figure
5, and similar ones for other sets of conditions, one can measure UP/(g

′h0)
1/2 for each

experiment and the reference value Ug/(g
′h0)

1/2 and hence calculate V ∗, using (12)
and the value of k (equal to 0.625) typical of these experiments. These results, for the
two values of ∆g′ used here, are shown in figure 6. As could have been anticipated,
V ∗ is small for the larger values of R and increases rapidly as R approaches zero,
and, significantly, depends, also, on ∆g′.

This last result shows that R is not the only parameter to affect V ∗ but that, for a
given value of R, V ∗ apparently also depends on the absolute magnitude of (g′h0)

1/2.
In an attempt to unravel this dependence the data of figure 6 were replotted as
VE/vs, i.e. V ∗ multiplied by the dimensionless velocity ratio (g′h0)

1/2/vs, where vs is
a representative value of the fall velocity of the particles. In this case the velocity
of the 6.7 µm particles was chosen (i.e. the particles at the maximum of the number
distribution, figure 2), the numerical value of vs being 0.006 cm s−1. The resultant
curves are plotted on figure 7. Here we find the interesting result that as R tends to
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Figure 7. The effective sedimentation velocity (VE) made dimensionless with the sedimentation
velocity (vs) of the 6.7 µm particles versus R. For the same two values of ∆g′1,2 as in figure 6 and all
values of x0.

zero VE/vs tends to a constant value of approximately 460, independent of the value
of ∆g′, but that (g′h0)

1/2/vs is not sufficient to reduce the results for R > 0.6 to a single
curve. The result above then gives a value for VE of about 2.8 ± 0.6 cm s−1 which is
typical of the velocity in the plumes that fall from the underside of the current. A
representative example is shown in figure 3 for a value of R = 0.77. Here the velocity
of the current nose is 7.7 cm s−1 at a value of x around 100 cm, the angle of the plume
front to the horizontal is 20± 2◦, so that an average vertical velocity of the front of
the plume cloud is roughly 2.8± 0.3 cm s−1, in surprisingly good agreement with the
value calculated above. For values of R greater than approximately 0.6 a dependence
on ∆g′ appears again.

This suggests the following interpretation. For values of R less than 0.6 the flux
through the interface is so large that the forward motion of the head of the current
has little effect upon it. However for larger values of R the translation of the head
modifies the flux, presumably by a mechanism that involves the shear, and turbulence,
at the interface. Thus for the larger value of ∆g′ the flux is reduced far more than
for the case of the smaller density ratio, i.e. where the values of (g′h0)

1/2 are much
smaller as well.

It is possible to collapse the data in a satisfactory way for the two values of ∆g′ by
using R∆g′1,2 as abscissa. This result is shown, normalized by ∆g′2, in figure 8. Exactly
why such a scaling works in this case is an open question but must be related to the
arguments given above in a way that is not amenable to simple modelling at this
time.

3.3.3. Behaviour at intermediate and long times

Towards the end of and after the constant-velocity phase discussed above the
characteristic bulbous shape of the head disappeared and it took on a wedge-like,
self-similar aspect. At the same time the velocity began to decrease, to eventually
approach zero. It is possible to model at least two segments of this transition by
making use of the results of Maxworthy (1983). In the first we consider the flow to
be self-similar with the dynamical balance given by

g′h2 ≈ UVsL, (13)
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Figure 8. The data of figure 7 with the abscissa scaled as R(∆g′1,2/∆g′2).

where L is the length and h a representative height of the current, and Vs a measure
of the vertical velocity due to sedimentation in this case. Upon making use of the
fact that Lh ≈ h0x0 = A0, the volume of the current/unit width, and U ≈ L/t (i.e.
U is now representative of the velocity of the whole current not just the head), one
obtains the spreading law

L ≈ [g′A2
0/Vs]

1/4 t1/4. (14)

Here we have assumed, for small R, that the well-known balances for non-sedimenting
currents i.e. between buoyancy and either inertia or viscous forces, are overwhelmed
by the dominance of the force due to sedimentation (6). Clearly this may not be
true for larger values of R and in these cases one can formally derive transition
times between the three possible self-similar balances with buoyancy (inertial, with
L ≈ t2/3; sedimenting, with L ≈ t1/4; and viscous, with L ≈ t1/5), as in Huppert (1982).
However, in the present experiments the interesting dynamics were in the range of
small R where these effects were not thought to be important.

In an attempt to describe the final stage of development, i.e. the existence of a
current of constant length, we explore the consequences of a flow external to the
current interacting with the flux of sediment. Quoting the equivalent result from
Maxworthy (1983) we find for the buoyancy–sedimentation force balance

g′h2 ≈ U0VsL, (15a)

which gives

L ≈ [g′A2
0/U0Vs]

1/3 = constant, (15b)

where U0 is the external flow velocity imposed by either or both the backflow
generated by the motion of the bottom, secondary, gravity current and the evolution
of the leading edge of the sedimenting plume, as discussed above, and as will be
expanded upon below. Note that in this case the flux due to sedimentation (Vs) must
be from the exterior fluid into the upper layer. That this is possible is emphasized
by the results of § 3.4 where this mixing of exterior fluid into the upper layer is
clearly demonstrated. Thus (15b) indicates that the combination of a flux through
the interface and an opposing, external flow is capable of stopping the motion of the
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current. Also, even if an external flow exists it will not be effective in slowing the
current if VE is small or zero, as it is at the later stages of the motion, after most of
the particles have sedimented out of the current.

In figure 9 we show measurements of xequil./(x0h0)
1/2 for most of the experiments

performed during this study, where xequil. is the length of the current when its forward
motion first stops. As can be seen, such a scaling is reasonably successful in collapsing
the equilibrium length for each value of ∆g′. A weak dependence on this parameter
still exists. By scaling R as R (∆g′1,2/∆g′2)1/2 it is possible to reduce the two curves to one
(figure 10). As with the case of the sedimentation velocity there is no way to rationalize
this result at this time. Even though equation (15b) gives a possible dependence on the
parameters of the problem it contains at least one dependent variable that is difficult,
if not impossible, to evaluate at this stage. Thus, U0 depends on the opposing flow
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Figure 11. Time versus distance for R = 1.14, showing the various regimes of
power-law behaviour.

generated by both the secondary gravity current and convection from the primary
current. Its parametric dependence on the independent variables cannot be found
from the simple experiments presented here. More extensive experiments are needed
to explore this problems in more detail.

Based on the material presented in the two previous subsections the following
scenario for the evolution of a sedimenting gravity current is proposed. We use the
case for R = 1.14 and x0 = 15.4 cm, shown on figure 11, as an example. This case
gives a current that stops just before the end of the tank. Upon release of the initially
stationary, well-mixed mass of particles and interstitial fluid the leading edge of the
resultant current initially accelerates at a decreasing rate, with x ≈ t1/2, to a constant
velocity, at x ≈ 20 cm in figure 11. This sequence of events is typical of those found in
similar cases, e.g. the acceleration of a region of mixed fluid in a stratified fluid (Amen
& Maxworthy 1980). The constant front velocity is determined by a balance between
the axial buoyancy difference and the sum of the drag force with no sedimentation and
an interfacial stress due to the loss of axial momentum from the nose of the current.
This phase of the motion is non-self-similar, as in a conventional current (Rottman &
Simpson 1983). After the nose has travelled a certain distance (x ≈ 130 cm on figure
11) it begins to decelerate and its shape slowly changes. During its transition from
the constant-velocity state to that described by equation (13) inertia becomes less
important and control changes from being at the nose to involving the whole current,
i.e. the flow becomes self-similar, at approximately x = 190 cm. Equation (13) holds
for only a short distance, to x = 210 cm. By that time the front velocity has become
so small and the interfacial flux so large that a large plume, and associated induced
velocity field, is formed (as in figure 3f–j). This field imposes an opposing velocity
at the head of the current and its interaction with the interfacial flux slows the front
further until it comes to rest, and equation (15a) then holds. This state exists for a
while until the flux is reduced, and the buoyancy difference increased, enough for the
current to start moving again, i.e. the left-hand side of equation (15a) then exceeds the
right-hand side. This final stage most probably involves a viscous–buoyancy balance,
with x ≈ t1/5.
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3.4. Late time characteristics and the fluxes of particles and upper-layer fluid

As can be seen in the photographs of figure 3 after the gravity current front has passed
a given location the instability commences and a sequence of plumes, consisting of
a mixture of particles and upper- and lower-layer fluids, penetrates downwards. One
can plot the vertical position of the front of these plumes, at a particular value of x,
as a function of time in order to determine a measure of the temporal behaviour of
the flux. Thus assuming that the buoyancy flux (B) has a temporal behaviour:

B ≈ tβ,
then the front should penetrate as

hF ≈ t3/2+β/2 = tα.

This is a modified version of the result of Fernado, Chen & Boyer (1994) which gives,
for a constant buoyancy flux, hF ≈ t3/2, where hF is the depth of the front of the
plumes below their initial position, i.e. before convection started.

As can be seen from figure 3 the interface between the convecting mixture of
particles and fluid was very irregular, being made up of a number of large individual
plumes. This made it very difficult to determine its vertical position (hF ), at any one
x-location, as a function of time, in order to compare with the equation quoted above.
A number of cases were analyzed and the data scatter was very large, so that no
quantitative statements can be made about the value of α. The best one can say,
qualitatively, is that α varied between 1 and something close to 1.5 as R varied from
small to large values. This suggests that, in general, β was negative with a magnitude
of order unity for the smaller values of R and approached zero for the larger values.
Clearly this problem needs to be studied in more detail in the future, with better and
more complete instrumentation.

To quantify this effect more thoroughly, and in a way that avoided the measurement
of the frontal position, the apparatus of § 2.2 was used. Here a constant volume of
particles and water was released in the horizontally constrained region between the
source and the barrier shown in figure 1(b). A gravity current was generated which
impacted the barrier so that after a few seconds a thick, uniform layer of particles
and fluid was formed. Sedimentation began when the particles had invaded the lower,
salty layer and formed a dense intermediate layer, as described above. The system
was allowed to run-down until all the particles had settled to the bottom of the tank.
As before, a gravity current of particles and mixed fluid moved along the bottom of
the tank into the right-hand compartment where the mixed fluid was released, away
from the original layer. As described in § 2.2, samples were taken from various depths
within this layer using a flattened nozzle and sample densities were measured to five
decimal places. A typical result is shown in figure 12. From these data the density
deficit ∫

[ρA − ρ(y)]dy

could be found and compared with the initial deficit

[ρA − ρI ]∆.
Where ∆ is the initial thickness of the upper layer, and we have assumed that the
initial density distribution is of the two-layer type. Subtracting these two results and
dividing by [ρA − ρI ] gives the depth (δ) of upper-layer fluid lost to the lower layer:
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Figure 12. Density versus depth after the sedimentation of all the particles through a stratified
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Figure 14. Schematic of the processes leading to the instability of a sedimenting front in the
simplest case of a thin interface and monodisperse particle distribution. (a) Initially the two layers
are stable. (b) After a short time a layer of particles has sedimented into the lower layer to form a
gravitational unstable system.

δ = ∆−
∫
{[ρA − ρ(y)]/[ρA − ρI ]}dy.

A number of experiments with different values of R and initial fluid depths were
carried out. The results are summarized in figure 13. As expected the loss of interstitial
fluid is greater as R tends to zero and clearly there is an optimum value of the fluid
depth between 3.4 and 6.7 cm (shown in the inset to the figure). The total loss can be
substantial, with up to 50 % of the interstitial fluid mixing downwards in the most
extreme case. Also note that the minimum density (ρ ≈ 1.009 g cm−3) in figure 13 is
greater than the initial density (ρ ≈ 1.000 g cm−3) of the upper layer. This indicates
that lower-layer fluid has also mixed upwards during the sedimentation process, cf.
double-diffusive convection. Unfortunately such measurements only give the overall
mixing due to sedimentation not the temporal variation of the mixing rate or flux,
which is needed for the modelling of § 3.3. The latter would require more sophisticated
apparatus and instrumentation than used here.

4. Discussion and conclusions
It has been shown that the role of sedimentation from a surface gravity current is

crucial to its motion when R is less than, approximately, 2. The passage of particles
through the interface has several effects. First, it can result in an effective stress at the
interface that can oppose the gravitational driving force. The convective plumes in the
lower layer, that result from this sedimentation, can then induce an opposing external
flow at the interface which, when it interacts with the interface flux, results in a force
that can stop the forward motion of the current. When the convective plumes, which
contain a mixture of particles and upper- and lower-layer fluid, reach the bottom of
the tank they generate a secondary gravity current, the flow external to which can
also interact with the interface flux to reinforce the force opposing the motion. Each
of these opposing effects are very nonlinear functions of the independent variables
and their detailed measurement is a suitable subject for future investigations.

Finally, the dynamical processes that lead to the instability of the sedimenting
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front, the formation of frontal plumes and the rapid transfer of particles and the fluid
across the interface is an important issue. The details are discussed in Maxworthy
(2000), where simple models are proposed. In summary it appears that the growth
of the observed frontal instability is controlled by the intrusion of a growing layer
of buoyancy excess between two stable fluid layers, as represented in figure 14. Here,
for simplicity, it is assumed that the interface between the two fluids in thin and that
the sedimenting particles are monodisperse. While this appears, on the surface, to be
a simple application, and extension, of the theories of Rayleigh–Taylor gravitational
instability a number of complicating factors are present. As a result the presentation
and discussion are contained in a separate paper (Maxworthy 2000).
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